
Tertiary Storage Organization for Large Multidimensional Datasets

Sachin More�, Alok Choudhary
Department of Electrical and Computer Engineering

Northwestern University
Evanston, IL 60028

fssmore,choudharg@ece.nwu.edu
tel +1-847-467-4129
fax +1-847-491-4455

1 Introduction

Large multidimensional datasets are found in diverse application areas, such as data ware-
housing [6], satellite data processing, and high-energy physics [9]. According to current
estimates, these datasets are expected to hold terabytes of data. Since these datasets hold
mainly historical and aggregate data, their sizes are increasing. Daily accumulation of raw
data and jobs generating aggregate data from the raw data are responsible for this increase.
Hence, estimates for the dataset sizes run into several petabytes. Though cost per byte as
well as area per byte for secondary storage has been dropping, it is still not cost effective
to store petabyte-sized datasets in the secondary storage [4].

Efficient storage organization for multidimensional data has been investigated exten-
sively [8, 1, 5]. Chen et al [1] discuss organization of multidimensional data on a hier-
archical storage system. The authors prove that the problem of efficient organization of
multidimensional data on a one-dimensional storage system, such as tertiary storage, is
NP-complete when arbitrary range queries are allowed. They present a five step strategy
based on heuristics for the problem. Jagadish et al ([5]) investigated the problem of effi-
cient organization of a data warehouse on secondary storage. The workload consists of a
restricted set of range queries using hierarchies defined on the dimensions. They cast the
problem as finding an optimal path through a lattice. They propose a dynamic programming
based algorithm that determines how various dimensions are laid out.

We are not aware of any work that takes into consideration practical constraints like the
order in which the data already exists or will be generated. Given an order in which data
currently exists (or will be generated), and a limited amount of temporary storage space,
we investigate issues in efficiently organizing multidimensional datasets on tertiary storage.
We cast the problem as permutation of the input data stream using limited storage space.
The rest of this document is organized as follows: The problem is formulated in Section 2.
Section 3 describes our approach. In Section 4, we present performance results. Section 5
presents conclusions.

�Supported by DOE ASCI Alliance program under a contract from Lawrence Livermore National Labs
B347875.

203



2 Background

Queries In a multidimensional dataset, each data item occupies a unique position in a
n-dimensional hyperspace. A query selects a subset of the data items by selecting a subset
of the domain in each dimension. A query is an instance of a query type [1]. A query
type is a n-tuple whose values are drawn from fALL; V ALUE;ANY;RANGEg for each
dimension. ALL selects the entire domain of the dimension. V ALUE selects exactly one
value from the domain. ANY is similar to V ALUE, but choose all domain values with
equal probability. RANGE choose a set of values from the domain of the dimension. We
assume that approximate execution probabilities of query types are known.

Native order and storage order A data source generates data items in a known order
(e.g., in temporal order, when time is one of the dimensions). We call this ordering of the
data items native order. Depending on the expected query types, this native order may not
be the most efficient way to store the dataset. We call the order in which the data items are
stored as the storage order. Data items need to be permuted, to transform the native order
into storage order.

Storage model The storage model consists of secondary storage of size D pages and
tertiary storage of size at least T pages, where T is the size of the dataset and T > D. The
tertiary storage consists of a tape drive controlled by a robotic arm and a set of magnetic
tapes. The data items generated by the data source temporarily reside on the secondary
storage before they are stored on tertiary storage. The secondary storage pages can be
viewed as temporary storage that is used to carry out data permutation.

3 Data clustering algorithm

Given native ordering of data items and the expected query workload, we derive a storage
order that optimizes the I/O time of the workload subject to some constraints and assump-
tions [7]. The input data is read exactly once in the native order. We estimate the available
temporary storage size to be of the order of the size of expected answer sets for queries in
the workload. We use the knowledge about the expected query types and their execution
probabilities to compute the storage order.

Though the storage order defines an ordering on data items, the process used to arrive at
the order need not be a sorting process. Given a set of data items, it is important to identify
the subsets of the data items that are accessed together. This is an important observation,
since the success of transforming the native order into a storage order depends on amount
of space available to carry out the transformation. We show that, given a dataset and a
workload, there exist multiple storage orders that are equally good. For a given native
order and amount of temporary storage space, only some of them are achievable [7]. In
general, data items need to be clustered based on their coordinate values in a subset of
dimensions. The clustering process needs to match coordinate values of the data items
rather than sort the data items based on their coordinate values. This observation forms the
basis of the data clustering process in this paper.

204



3.1 Computing affinity between data items

The actual process of matching data items uses a measure of affinity between data items.
Affinity between two data items, Ii and Ij, is the probability that if Ii is accessed by a
query then Ij is also accessed, and vice versa. Two data items that are always accessed
together have an affinity equal to 1. Two data items that are never accessed together have
an affinity equal to 0. We use the following formulae to compute affinity between two data
items, I1 and I2, is

PQk

Qi=Q1
(pi �

QDn

Dj=D1
�
j
i ). Where Qi is the ith query type and pi is its

execution probability. Dj refers to the jth dimension. Qi(j) is the selection criteria ofQi in
dimension Dj. If Qi(j) = V ALUE then vji is the value parameter for Qi from the domain
of Dj . If Qi(j) = RANGE then rji is the range parameter for Qi from the domain of Dj.
I1(j) and I2(j) are the coordinates of I1 and I2 in Dj . �

j
i is calculated using the following

table:

�
j
i

Qi(j) = ALL 1
Qi(j) = ANY and I1(j) = I2(j) 1
Qi(j) = V ALUE and I1(j) = I2(j) = v

j
i 1

Qi(j) = RANGE and jI1(j)� I2(j)j � r
j
i 1

otherwise 0

3.2 The heuristic approach to data clustering

[1] proves that a simpler version of the problem, one without temporary space constraint, is
NP-complete. Hence, we use heuristics to design our algorithm and evaluate them exper-
imentally. The generic algorithm inputs some data items in native order in each iteration.
It also produces, in each iteration, some output data items in storage order. This process is
repeated until all data items are output. A heuristic approach needs to answer the following
questions:

1. If there are d � D pages free in the temporary storage, how many data items to input
in each iteration?

2. If there are k data items in the temporary storage how many and which data items to
output in each iteration?

Greedy heuristic The greedy heuristic answers these questions as follows: Input as many
data items as possible to fill up the temporary storage during each iteration. Output data
items only if the temporary storage is full. While outputting, it chooses the data item that
has maximum affinity to the last data item that was output. The rationale behind the greedy
heuristic is as follows: It is important to keep the temporary storage filled to capacity, since
that gives a wider choice to the output phase in choosing data items to be output, which
will result in better decisions. Hence, the input phase should read in as many data items
as possible, and output phase should output as few data items as possible. The greedy
heuristic results in a simple and low complexity algorithm.

205



Look-back-m heuristic This is a generalization of the greedy heuristic. The greedy
heuristic looks at only one data item, the one that it just output, to decide which data item
to output next. The look-back-m heuristic remembers the last m data items that were
selected for output. It uses a larger history to improve the quality of the solution. For
each data item in the temporary storage, the algorithm computes its affinity to these m data
items, called backward affinity. It outputs the data item that has the maximum backward
affinity. Remembering the last m data item has the side effect of reducing the space that
holds incoming data items. If M pages (output bin) are used to hold the previous m data
items, then only D �M pages (input bin) are available to hold the incoming data items.
This reduces the choice available to select the next data item to be output.

Forward tuning During the execution of the Look-back-m heuristic, multiple candidate
data items in the input bin can have same backward affinity. For example, when there are
no data items in the output bin, in the initial phase of the algorithm, all data items in the
input bin have zero backward affinity. The algorithm randomly chooses from candidate
data items. The forward tuning technique uses data items in the input bin to improve the
performance. For each data item in the input bin, it computes its affinity to the remaining
data items in the input bin, called forward affinity. It outputs the data item having maximum
forward affinity.

4 Performance results

We base our experiments on the Sequoia 2000 Storage Benchmark ([10]) for the results
presented in this section. We use the national dataset accumulated over 100 half-months.
This is a four-dimensional dataset. The dimensions are time, band, X, and Y, where X and
Y are the two dimensions from the raster image. We make the following assumptions about
the native order of the dataset: all the raster images are chronologically sorted, since they
were captured in that order. Raster images for a half-month are not sorted in any particular
order. The raster images are created in row-major order (that is Y changes faster than X in
the image). Two query types with distinct access patterns are used. Instances of Query Type
1 select all images belonging to a band. Each instance accesses 1

5

th of the dataset. Instances

of Query Type 2 select all images belonging to a half-month. Each instance accesses 1

100

th

of the dataset. Based on these query types, we experimented with two kinds of workloads.
Workload 1 consists of majority (90%) of type 1 queries. Workload 2 consists of majority
(90%) of type 2 queries.

The results presented here compare the performance of our algorithms (Look-back-m
and Forward Tuning) with three other algorithms. The naive algorithm, which we refer
to as Unoptimized, preserves the native order while storing data. The band-date algorithm
sorts data items on the date dimension, and within the date dimension they are sorted on the
band dimension. The date-band algorithms reverses the inner and outer sort dimensions of
the band-date algorithm. We also present the best case times, calculated by storing data for
each query at the start of the media using as much data replication as necessary. The best
case times represent a lower bound on the workload execution time.

We use a simulator that uses the analytical model of Exabyte EXB-8505XL tape drive

206



and EXB-210 tape library described in [2] and uses the SORT algorithm ([3]) for I/O
scheduling during query execution. The time taken to execute the workload by an algo-
rithm is plotted as a ratio of the actual execution time divided by best case time. We
evaluate the performance of the algorithms by using temporary storage equal to the size of
the instances of query type 1, query type 2, and the average query size of the workload.

Workload 1 Figure 1(a) shows that the performance of various algorithms is between 4
to 22 percent of best case. The wide range in performance is expected since the workload
is dominated by larger queries that require major changes in the native order in order to be
executed efficiently. The band-date scheme performs badly since it more or less preserves
the native order; in fact its performance is worse than the unoptimized case. The date-
band scheme improves its performance when given more temporary storage space. The
date-band scheme favors query type 1, which dominates this workload. Hence, a closer
transformation to the intended order (from native order) with increased amount of memory
improves the performance. Our algorithms (Look-back-m and Forward Tuning) outperform
other algorithms; moreover, they are within 6 percent of best case if the amount of memory
available is more than average query size. The Forward Tuning algorithm does not provide
any appreciable performance benefits over Look-back-m.

Workload 2 Workload 2 is dominated by query type 2, and the native order is favorable
to it. The date-band scheme is not favorable to the majority of the queries; hence, we see
a reduction in performance as the amount of available memory increases (increasing the
closeness to a perfect date-band order) (figure 1(b)). Other algorithms perform similar to
each other, the range of performance being around 18 percent of best case. The reason is
that these algorithms tend to retain the native order; hence, the increase in the temporary
storage size has no effect on the performance. None of the algorithms get close to best
case because they do not take into account the size of the instance of the query types in the
workload. A more sophisticated algorithm would have realized that 10% of the queries in
the workload access approximately 66% of the total data accessed by all the queries in the
workload and tried to optimize the storage layout for the minority query type (query type
1). Knowledge about the amount of data accessed by an instance of a query type requires
advance information about the domain of each dimension. The algorithms presented in this
paper were designed to work without such knowledge.

5 Conclusions

This paper investigates issues in efficient tertiary storage organization for multidimensional
datasets. We show that the order in which the dataset is generated (or currently stored)
affects the storage layout decisions due to limited amount of temporary storage available
for data reorganization. We further show that efficient storage layout can be designed in
this situation by considering data items that are accessed together rather than sorting the
data items based on their coordinates. The experimental results have shown our techniques,
based on heuristics, to be effective. They also reveal that when taking decisions about data

207



1

1.05

1.1

1.15

1.2

1.25

size of query 2 average query size size of query 1

ex
ec

ut
io

n 
tim

e/
O

PT

secondary storage size

Look-back-m
Forward Tuning

Unoptimized
band-date layout
date-band layout

Best case

(a) Workload 1

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

size of query 2 average query size size of query 1

ex
ec

ut
io

n 
tim

e/
O

PT

secondary storage size

Look-back-m
Forward Tuning

Unoptimized
band-date layout
date-band layout

Best case

(b) Workload 2

Figure 1: Performance Results

layout, one must consider the amount of data accessed by different queries in the workload
besides the query characteristics and their execution frequencies.

References

[1] L. T. Chen, R. Drach, M. Keating, S. Louis, D. Rotem, and A. Shoshani. Efficient
organization and access of multi-dimensional datasets on tertiary storage systems.
Information Systems, 20(2):155–183, 1995.

[2] B. K. Hillyer, R. Rastogi, and A. Silberschatz. Scheduling and data replication to im-
prove tape jukebox performance. In Proceedings of the 15th International Conference
on Data Engineering, Sydney, Austrialia, pages 532–541, 1999.

[3] B. K. Hillyer and A. Silberschatz. Scheduling non-contiguous tape retrievals. In Pro-
ceedings of Sixth NASA Goddard Conference on Mass Storage Systems and Technolo-
gies and Fifteenth IEEE Mass Storage Systems Symposium, University of Maryland,
College Park, Maryland, March, 1998.

[4] B. Inmon. The Role of Nearline Storage in the Data Warehouse: Extending your
Growing Warehouse to Infinity. Technical white paper. StorageTek.

[5] H. V. Jagadish, L. V. S. Lakshmanan, and D. Srivastava. Snakes and sandwiches:
Optimal clustering strategies for a data warehouse. In Proceedings ACM SIGMOD
International Conference on Management of Data, Philadephia, Pennsylvania, USA.,
pages 37–48. ACM Press, 1999.

[6] R. Kimball. The Data Warehouse Toolkit. John Wiley and Sons, Inc., 1996.

[7] S. More and A. Choudhary. Tertiary Storage Organization for Large Multidimensional
Datasets. Technical Report CPDC-TR-9911-018, Center for Parallel and Distributed
Computing, Northwestern University, November 1999.

208



[8] S. Sarawagi and M. Stonebraker. Efficient organization of large multidimensional
arrays. In Proceedings of the Tenth International Conference on Data Engineering,
Houston, Texas, USA., pages 328–336. IEEE Computer Society, 1994.

[9] A. Shoshani, L. M. Bernardo, H. Nordberg, D. Rotem, , and A. Sim. Storage man-
agement for high energy physics applications. In Computing in High Energy Physics,
1998.

[10] M. Stonebraker and J. Dozier. SEQUOIA 2000: Large Capacity Object Servers to
Support Global Change Research. Technical Report SEQUOIA 2000 Technical Re-
port No. 1, Electronics Research Lab, March 1992.

209


